skip to content

Many-body Quantum Dynamics

Cavendish Laboratory

We achieved Bose-Eintein condensation of K39 atoms.

We reached the next important benchmark, Bose-Einstein condensation of potassium-39 atoms. Using the readily accessible Feshbach resonance of this species, we can now tune interatomic interactions from strongly attractive to non-interacting to strongly repulsive. We are looking forward to studying quantum many-body physics in two-dimensional quasicrystal for the first time.


Thanks to all contributors!


Latest news

News & Views on first-order phase transition

31 March 2022

Bryce Gadway wrote a News & Views article for Nature Physics on our paper on Realizing Discontionuous Phase Transitrions. Check it out:

Towards quantum simulation of false vacuum decay

20 January 2022

In our lastest work we have used a resonantly driven optical lattice to turn the Mott transition into a first-order (discontinuous) transition. We were able to directly observe the associated hysteresis and metastability, where the system remains stuck in its original phase (the false vacuum) even though the ground state...

First AION collaboration workshop

11 November 2021

Finally, we were able to hold teh first in-person collaboration of the new AION collaboration, where we want to develop large scale atom interferometers. aion_collaboration_nov21_2mp.jpg

Postdoc positions Open

2 December 2020

Two new Postdoc positions available to work with us on experiments with ultracold atoms in and out of optical lattices. Application closes on 3/1/21.

Localisation paper published in PRL

13 November 2020

Our latest work on Observing localisation in a 2D quasicrystalline optical lattice was published today in PRL. Quasicrystals are long-range ordered but not periodic, representing an interesting middle ground between order and disorder. We experimentally and numerically study the localization transition in the ground state...