skip to content

Many-body Quantum Dynamics

Cavendish Laboratory

Atom Interferometry - AION

We are part of the AION collaboration that is developing a new experimental platform to perform interferometry with ultracold strontium atoms. In close collaboration with other UK universities, we will use the strontium clock transition to perform high-resolution interferometry on atoms in free flight. The long-term goals of this project include detection of mid-frequency gravitational waves, ultra-light dark matter, and other tests of fundamental physics, see:

AION: An Atom Interferometer Observatory and Network
L. Badurina et al. (AION Collaboration)
JCAP 05(2020), 011 (2020)

In atom interferometry, a cloud of ultracold atoms is separated and the two components allowed to separately evolve before being recombined. Information on the difference in phase accumulated along each path is obtained from the resulting interference. This phase evolution is highly sensitive to small forces and changes in atomic transition frequencies, leading to established applications in gravimetry, inertial sensing and metrology. An emerging application of atom interferometry is to detection problems in astrophysics, cosmology and high energy physics.

Within Cambridge, we are working closely together with our collegues from the high energy group (

Latest news

Observing the two-dimensional Bose glass in an optical quasicrystal

2 March 2023

Our latest work on observing the two-dimensional Bose glass in our optical quasicrystal is now on the Arxiv: Arxiv:2303.00737 . We could not only observe the Bose glass and the phase transition between Bose glass and superfluid, but could furthermore experimentally establish the non-ergodic character of the Bose glass...

Hubbard Models for Quasicrystalline Potentials

13 October 2022

Our latest work on creating Hubbard Models for Quasicrystalline Potentials is now on the Arxiv (2210.05691). In it, we present a numerical method for constructing the Hubbard Hamiltonian of non-periodic potentials without making use of Bloch's theorem, and then apply it to the eightfold rotationally symmetric 2D optical...

AION Vacuum system arrived

4 July 2022

The AION experiment reached an important first milestone with the UHV vacuum chamber having been delivered. Next stop: laser cooled Strontium. aion_uhv_chamber.jpg

News & Views on first-order phase transition

31 March 2022

Bryce Gadway wrote a News & Views article for Nature Physics on our paper on Realizing Discontionuous Phase Transitrions. Check it out:

Towards quantum simulation of false vacuum decay

20 January 2022

In our lastest work we have used a resonantly driven optical lattice to turn the Mott transition into a first-order (discontinuous) transition. We were able to directly observe the associated hysteresis and metastability, where the system remains stuck in its original phase (the false vacuum) even though the ground state...