skip to content

Many-body Quantum Dynamics

Cavendish Laboratory
 
Floquet Heating in PRL

Our latest work on Interaction Dependent Heating and Atom Loss in a Periodically Driven Optical Lattice has been published as an Editor's suggestion in PRL

The periodic driving of optical lattices has enabled the creation of novel band structures not realizable in static lattice systems, such as topological bands for neutral particles. However, especially driven systems of interacting bosonic particles often suffer from strong heating. We have systematically studied heating in an interacting Bose-Einstein condensate in a driven one-dimensional optical lattice. We find interaction dependent heating rates that depend on both the scattering length and the driving strength and identify the underlying resonant intra- and interband scattering processes. By comparing the experimental data and theory, we find that, for driving frequencies well above the trap depth, the heating rate is dramatically reduced by the fact that resonantly scattered atoms leave the trap before dissipating their energy into the system. This mechanism of Floquet evaporative cooling offers a powerful strategy to minimize heating in Floquet engineered quantum gases.

 

Phys. Rev. Lett. 119, 200402 (2017)

Subject: 

Latest news

IOP Joseph Thomson Medal

22 December 2023

Professor Ulrich Schneider received the IOP 2023 Joseph Thomson Medal and Prize for groundbreaking experiments on the collective dynamics of quantum gases in optical lattices, including fundamental studies of localization effects in both disordered and quasicrystalline systems. More information at: https://www.iop.org/...

Postdoc Positions available

1 July 2023

We have two experimental postdoc opportunities on many-body physics in Optical Quasicrystals and on being part of the UK Quantum Technology Hub and developing optical optical-lattice and tweezer-based Quantum Simulators . More information at: https://www.jobs.cam.ac.uk/job/41624/ Applications close on 15/8/23.

Observing the two-dimensional Bose glass in an optical quasicrystal

2 March 2023

Our latest work on observing the two-dimensional Bose glass in our optical quasicrystal is now on the Arxiv: Arxiv:2303.00737 . We could not only observe the Bose glass and the phase transition between Bose glass and superfluid, but could furthermore experimentally establish the non-ergodic character of the Bose glass...

Hubbard Models for Quasicrystalline Potentials

13 October 2022

Our latest work on creating Hubbard Models for Quasicrystalline Potentials is now on the Arxiv (2210.05691). In it, we present a numerical method for constructing the Hubbard Hamiltonian of non-periodic potentials without making use of Bloch's theorem, and then apply it to the eightfold rotationally symmetric 2D optical...