skip to content

Many-body Quantum Dynamics

Cavendish Laboratory
 
MBL in an Open Quantum System

Our paper on Signatures of Many-Body Localization in a Controlled Open Quantum System has been published in PRX.

The behavior of an isolated quantum system follows one of two distinct paradigms. It can approach a thermal equilibrium state, where any initial quantum correlations spread throughout the system, rendering the system effectively classical. Alternatively, in the presence of disorder, a system can be what is known as “many-body localized” (MBL). This regime has recently received a lot of attention because here some quantum coherences remain local up to infinite times. However, experimental investigation of this novel state is complicated by unavoidable interference from the environment, which acts as a source of fluctuations (a “bath”) that eventually thermalizes the system. We have developed a method to implement a controllable bath and present a systematic study of its effects on a MBL system.

In our experiment, we illuminate a charge-density pattern in an ensemble of ultracold potassium atoms (the MBL system) with nearly resonant light, and we investigate the system’s response. Here, the light intensity controls the coupling to the bath, and the charge-density pattern decays as a stretched exponential with a linearly dependent rate. Furthermore, we find that the susceptibility of the MBL system to the photon bath strongly increases when approaching the MBL transition, which is analogous to the effects of finite temperatures in the vicinity of a quantum phase transition.

Using control over the bath, our study is a first step toward extrapolating the behavior of truly isolated MBL systems from experimental measurements. The method for implementing a controllable photon bath also has applications in a variety of experiments on cold atoms, both within and outside of the context of MBL.

Read the paper at (Open access): https://doi.org/10.1103/PhysRevX.7.011034

 

Subject: 

Latest news

IOP Joseph Thomson Medal

22 December 2023

Professor Ulrich Schneider received the IOP 2023 Joseph Thomson Medal and Prize for groundbreaking experiments on the collective dynamics of quantum gases in optical lattices, including fundamental studies of localization effects in both disordered and quasicrystalline systems. More information at: https://www.iop.org/...

Postdoc Positions available

1 July 2023

We have two experimental postdoc opportunities on many-body physics in Optical Quasicrystals and on being part of the UK Quantum Technology Hub and developing optical optical-lattice and tweezer-based Quantum Simulators . More information at: https://www.jobs.cam.ac.uk/job/41624/ Applications close on 15/8/23.

Observing the two-dimensional Bose glass in an optical quasicrystal

2 March 2023

Our latest work on observing the two-dimensional Bose glass in our optical quasicrystal is now on the Arxiv: Arxiv:2303.00737 . We could not only observe the Bose glass and the phase transition between Bose glass and superfluid, but could furthermore experimentally establish the non-ergodic character of the Bose glass...

Hubbard Models for Quasicrystalline Potentials

13 October 2022

Our latest work on creating Hubbard Models for Quasicrystalline Potentials is now on the Arxiv (2210.05691). In it, we present a numerical method for constructing the Hubbard Hamiltonian of non-periodic potentials without making use of Bloch's theorem, and then apply it to the eightfold rotationally symmetric 2D optical...

AION Vacuum system arrived

4 July 2022

The AION experiment reached an important first milestone with the UHV vacuum chamber having been delivered. Next stop: laser cooled Strontium. aion_uhv_chamber.jpg